
ARI Research Note 95-40

Transfer of Skills
Among Programming Languages

John R. Anderson
Carnegie Mellon University

DTIC
ELECTE
SEP t 2 1995

F

~n

Research and Advanced Concepts Office
Michael Drillings, Acting Chief

19950911 017
™ www ma>B®m> d

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution Is unlimited.

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

Research accomplished under contract
for the Department of the Army

Carnegie Mellon University

Technical review by

Joseph Psotka

Edgar M. Johnson
Director

Accesion For

NTIS CRA&I
DTiC TAB
Unannounced
Justification

?
Ü

By
Distribution /

Availability Codes

Dist

AW

Avail and/or
Special

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

ngton

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1995, June
3. REPORT TYPE AND DATES COVERED

FINAL 8/89 - 8/94
4. TITLE AND SUBTITLE

Transfer of Skills Among Programming Languages

6. AUTHOR(S)

John R. Anderson (Carnegie Mellon University)

'i 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

I Department of Psychology
I Baker Hall 346-B
] Carnegie Mellon University
I Pittsburgh, PA 15213

| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSftS1

U.S. Army Research Institute for the Behavioral and
Social Sciences

ATTN: PERI-BR
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

S. FUNDING NUMBERS

MDA 903-89-K-0190
0601102A
B74F
C04
2901

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARI Research Note
95-40

; 11. SUPPLEMENTARY NOTES

COR: Michael Drillings

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited,

| 13. ABSTRACT (Maximum 200 words)

\ The general picture that has emerged from this research is one in which
[programming skill is to be conceived as translation from one surface representation
I to another. While the successful student will have this surface representation
[annotated with rich representation of its functionality, the skill is still quite
[specific to the notational details of the representations involved. The initial
jjcontext for this research was set by two things supported by a prior ARI contract.
[One of these was the development of a general theory of transfer of cognitive skill,
[which could be conceived as a modern information-processing rendition of Thorndike's
jjtheory of identical elements (Thorndike & Woodworth, 1901; Singley & Anderson, 1989).
I We showed that the degree of transfer could be predicted by the amount of overlap
jjbetween knowledge structures in the ACT theory, which proposed that knowledge both
Iconsisted of procedural knowledge and declarative knowledge (Anderson, 1993). The
fother part of the research background for this project was the development of tutors
jfor programming languages, particularly LISP (Anderson, Conrad, & Corbett, 1989). We
jjwanted to generalize our understanding of both tutoring and of programming.

14. SUBJECT TERMS

jj tutoring procedural knowledge declarative knowledge
I skill transfer

§17. SECURITY CLASSIFICATION
s OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

14
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-I8
298-102

TRANSFER OF SKILLS AMONG PROGRAMMING LANGUAGES

CONTENTS

Page

BACKGROUND 1

WORK ON TUTORING ARCHITECTURES 2

STUDIES OF PROGRAMMING TRANSFER 3

CONCLUSIONS 6

REFERENCES 8

APPENDIX 10

iu

Final Report for MDA903-89-K-0190
Transfer of Skills among Programming Languages

August 7,1989 - August 7,1994

John R. Anderson
Carnegie Mellon University

Background

The initial context for this research was set by two things supported by a prior

ARI contract. One of these was the development of a general theory of transfer

of cognitive skill (Singley & Anderson, 1989). This theory could be conceived as

a modern information-processing rendition of Thorndike's theory of identical

elements (Thorndike & Woodworth, 1901). Thorndike had proposed that one

skill transferred to another skill as a function of the degree that they shared

elements in common. Thorndike was never very precise on the nature of the

shared elements but encouraged a general conception of them in terms of S-R

bonds. This led to an overly narrow conception of what transfer would be

obtained. Singley and Anderson showed that transfer could be much broader

than this conception implied. However, we showed that the degree of transfer

could be predicted by the amount of overlap between knowledge structures in

the ACT theory (Anderson, 1993). The ACT theory proposed that knowledge

both consisted of procedural knowledge and declarative knowledge. Procedural

knowledge is embodied in production rules which leads to a "skill-like"

competence that can apply when certain goals are set across a wide range of

domains. Declarative knowledge is represented as facts or chunks (Anderson,

1993) which enable transfer of knowledge to serve other goals although the

fluidity of transferred performance was not as great as when production rules

serve as the basis of transfer. Basically, procedural knowledge has high

performance and low transfer while declarative knowledge has low performance

and high transfer.

The other part of the research background for this project was the development

of tutors for programming languages, particularly LISP (Anderson, Conrad, &

Corbett, 1989; Anderson & Reiser, 1985). We wanted to generalize our

understanding of both tutoring and of programming. This led to the goal of

developing a tutoring architecture that would support programming in multiple

programming languages. This would both generalize our understanding of

tutoring and provide us with a tool for studying transfer among multiple

programming languages. Programming seemed an appropriately complex

domain for understanding the procedural and declarative aspects of transfer

postulated in the Anderson and Singley theory. We were not disappointed in

this expectation.

Work on Tutoring Architectures

We initially developed a system for tutoring the programming languages LISP,

Prolog, and Pascal but this architecture became generalized to support tutoring

systems in general and became the basis of our tutoring work on high school

mathematics. A special case of this tutoring architecture remains for developing

programming tutors based on a structural editor interface. The work on the

tutoring architecture is reported in Anderson and Pelletier (1991), Corbett,

Anderson, and Fincham (1991), and Anderson, Corbett, Fincham, Hoffman, and

Pelletier (1992). A more general overview of our work on tutoring is contained

in Anderson, Corbett, Koedinger, and Pelletier (in press). All of these papers are

included with this report.

We developed what we have come to call the Tutor Development Kit (TDK).

Developing a tutor within it involves the following steps.

1. Create an interface for displaying the target competence. This can be

done using LISP-like facilities provided by the TDK but one can also use

independent software packages that communicate with the kit. It became

clear that the structure of the tutorial interface substantially determined

the scope of the transfer.

2. Develop production rules which are capable of solving the target class

of problems within the kit. Also create bug-rules to the represent student

misconceptions. These production rules are relatively specific to the

interface being used.

3. Attach declarative instruction to the target rules and bug rules and to

the declarative representations of individual problems. These are

represented as dialog templates which can be combined to create context-

specific instruction.

4. Create a curriculum which amounts to creating a set of problems and

establishing a set of mastery principles for controlling sequencing through

the problems. We can deploy these tutors in a number of modalities

achieving different divisions of control between tutor and student.

The tutor development kit provides the facilities for creating, interpreting, and

debugging the production rules, integrating the various parts above, and for

logging and analyzing data on student interactions. To date well over 2000

students have taken courses which involve many tens of hours of interaction

with tutors created within this kit. This year over 500 Pittsburgh students spend

half of their time in their algebra class interacting with our tutors. While ARI did

not support creation of the algebra tutors, it did support initial creation of the

underlying architecture.

Studies of Programming Transfer

While the majority of our research has involved study of transfer among

programming languages, Wu and Anderson (1993, report enclosed) did study

transfer among various strategies for iteration within the programming language

Pascal. There we found that subjects were very sensitive to the problem features

that predicted the appropriateness of a particular programming strategy and did

not suffer negative transfer from practicing other iteration constructs. This

showed that students have high sensitivity to the functionality of programming

constructs which is an important counterpoint to our other research showing

their sensitivity to the surface form of the programs.

Our original approach to the main project was guided by the view that transfer

among programming languages would be facilitated if we could get students to

extract the "declarative essence" of a program. We hypothesized that this could

be achieved by using a data-flow representation of the language. Therefore, we

created a data-flow programming language and looked at students learning with

it compared to their learning LISP. Some of this research is reported in

Anjaneyulu and Anderson (1992) which is also enclosed with this report. In fact,

we did not find any special advantages of this representation and found subjects

treated it like any other programming language. In subsequent research we

found that subjects basically did not have any representation of the essence of a

programming language but rather had a number of superficial representations

such as natural language, flowcharts, or actual code and that their skill was in

translating between these representations. This was one piece of evidence

among others that has led us to a view of competence much more tied to surface

representation.

We followed this up with two directions of research concerned with transfer

among specific languages. One direction of research looked at students who

already knew how to program in two languages. They solved a problem in one

language and then we looked at how well they transferred to solving the

problem in a second language (Wu's 1992 dissertation, enclosed). This research

found large positive transfer of the general algorithm but not of specific code.

Thus, we found subjects were facilitated on the second program in terms of

reduced planning time but not in terms of reduced coding time. Moreover,

subjects seemed to be carrying over the algorithm that best solved the problem in

the first language. Thus, if they solved a problem in Prolog where a different

algorithm was more appropriate they would tend to use that same algorithm in

LISP. Also subjects showed a strong tendency to carry over superficial features

like variable names from one program to another. This supported a view that

subjects were transferring from a memory of the original code and setting

themselves the task of writing equivalent code in the target language. Once

again we see evidence for a notation-specific view of competence. They

understand the functionality of the notation and certainly are not just doing

symbol-for-symbol translations. Still that notation is the skeleton on which their

functional understanding is attached.

More of our research has been focused on a different transfer paradigm. In this

paradigm subjects are first taught one language and then another language.

Early reports on this are Wu and Anderson (1991) and Anderson, Conrad,

Corbett, Fincham, Hoffman, and Wu (1993), both of which are enclosed. There

we found striking evidence for no transfer from learning the syntax of any one of

LISP, Prolog, or Pascal and to learning the syntax of any other of these languages.

Subjects showed no or little benefit when measured by coding time or coding

errors. This turns out to actually be predicted by the knowledge representations

in our tutors since the production rules used for any programming language in

the tutors are completely different than the production rules for any other

programming language. This reinforces the impression from other work that

superficial differences in code are incorporated in the representation of the

competence.

A much deeper analysis of the transfer of programming within our tutors was

instigated by Leon Harvey and is reported in Harvey and Anderson (in press,

also enclosed). This research looked at transfer between from the first lesson of

Prolog to the first lesson of LISP. We replicated the earlier results of no transfer

in terms of coding time but found large positive transfer in terms of time to read

the declarative instruction about LISP in the text that preceded the programming

exercises in the tutor. We also found large positive transfer in time to read the

instructional messages that the tutor delivered. Moreover, we were able to show

that this transfer was specific to those portions of text that described concepts

that were common between LISP and Prolog. A reading time model was

developed that accurately predicted the degree of transfer to reading various

passages. This indicated that there is a level of declarative knowledge involving

things such as variables and list structures which does transfer between

languages.

In the last year of the ARI contract, Al Corbett and I have followed up this

research in two ways. First, we have established in a large course that this

pattern of declarative but not procedural transfer holds up both going from LISP

to Prolog and well as from Prolog to LISP. We have also established that there is

declarative transfer for all lessons and not just the first lesson. Second, we have

been using this analysis to facilitate instruction by creating special instructional

modules to teach core declarative concepts. In particular, we have been focusing

on the benefits of prior instruction on list structures. We show that subjects are

then better able to learn a programming language and display more systematic

learning curves. This research is still being written up. It remains to be seen

whether improved declarative instruction results in any different patterns of

transfer.

Conclusions

The general picture that has emerged from this research is one in which

programming skill is to be conceived as translation from one surface

representation to another. While the successful student will have this surface

representation annotated with a rich representation of its functionality, the skill

is still quite specific to the notational details of the representations involved.

Thus, we do not see transfer of coding skills among programming languages.

On the other hand, these representations have a common functionalities

involving things like variables, list structures, and iteration. An initial

understanding of these functionalities and the natural language terms for

describing them is something that can transfer among programming languages.

We believe this conception of competence and transfer is not unique to

programming but extends to other domains like mathematical problem solving.

This research can be interpreted fairly well in the Singley and Anderson

framework set up in 1989. The coding skills are fundamentally procedural and

because of representational differences involve production rules that cannot

transfer across programming languages. On the other hand, the concepts and

language of program functionality are general and will transfer across

programming languages. The major evolution in our thinking since 1989 has

concerned the importance of surface notation. While we are hardly at the level of

Thorndike's S-R bonds, we clearly have moved in the direction of something

closer to that original conception.

References

Ande rson, J. R.
Erlbaum.

(1993). Rules of the mind. Hillsdale , NJ:

Ande rson, J. R.,
tutor and s
of the mind

Conrad, F. G., & Corbett,
kill acquisition. In J. R.
. Hillsdale, NJ: Erlbaum.

A. T. (1993).
Anderson (Ed.)

The LISP
, Rules

Anderson, J. R., Conrad,, F. G., Corbett, A. T., Fincham, J. M ,
Hoffman, D., & Wu, Q. (1993). Computer programming and
transfer. In J. R. Anderson (Ed.), Rules of the mind.
Hillsdale, NJ: Erlbaum. _

Anderson, J. R., Corbett, A., Fincham, J., Hoffman, D., &
Pelletier, R. (1992). General principles for an intelligent
tutoring architecture. In V. Shute, & W. Regian (Eds.),
Cognitive approaches to automated instruction (pp. 81-106)
Hillsdale, NJ: Erlbaum. ~

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R.
(in press). Cognitive tutors: Lessons learned. The Journal
of Learning Sciences. —

Anderson, J. R., & Pelletier, R. (1991). A development system for
model-tracing tutors. Proceedings of the International
Conference of the Learning Sciences (pp. 1-8). Evanston, IL.

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte,
10, 159-175. -1 -

Anjaneyulu, K. S. R., & Anderson, J. R. (1992). The advantages of
data flow diagrams for beginning programming. Proceedings of
the Second International Conference on Intelligent Tutoring
Systems, Montreal. ~ ~ ~ ~

Corbett, A. T., Anderson, J. R., & Fincham, J. M. (1991). Menu
selection vs. typing: Effects on learning in an intelligent
programming tutor. Proceeding of the International
Conference of the Learning Sciences (pp. 107-117). Evanston,
-Ll_j •

Harvey, L., & Anderson, J. R.. (in press). Transfer of
declarative knowledge in complex information processing
domains. ~ ~ ——-

Singley, M. K., & Anderson, J.. R. (1989). Transfer of cognitive
skill. Cambridge, MA: Harvard University Press. ~

Thorndike, E. L., & Woodworth, R. S. (1901). The influence of
improvement in one mental function upon the efficiency of
other functions. Psychological Review, 9, 374-382.

Wu, Q. (1992). Knowledge transfer among programming languages.
(Doctoral dissertation, Pittsburgh, PA: Carnegie Mellon
University).

Wu, Q., & Anderson, J. R. (1991). Knowledge transfer among
programming languages. Proceedings of the 13th Annual
Conference of the Cognitive Science Society (pp. 376-381).

Wu, Q., & Anderson, J. R. (1993). Strategy choice and change in
programming. International Journal of Man and Machine
Studies, 39, 579-598.

Appendix

Publications Supported by Contract MDA903-89-K-0190
Transfer of Skills Among Programming Languages

Anderson, J. R., Conrad, F. G., Corbett, A. T., Fincham, J. M.,
Hoffman, D., & Wu, Q. (1993). Computer programming and
transfer. In J. R. Anderson (Ed.), Rules of the mind.
Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A., Fincham, J., Hoffman, D., &
Pelletier, R. (9192). General principles for an intelligent
tutoring architecture. In V. Shute and W. Regian (Eds.),
Cognitive approaches to automated instruction (pp. 81-106) .
Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R.
(in press). Cognitive tutors: Lessons learned. The Journal
of Learning Sciences.

Anderson, J. R., & Pelletier, R. (1991). A development system for
model-tracing tutors. Proceedings of the International
Conference of the Learning Sciences (pp. 1-8). Evanston, IL.

Anjaneyulu, K. S. R., & Anderson, J. R. (1992). The advantages of
data flow diagrams for beginning programming. Proceedings of
the Second International Conference on Intelligent Tutoring
Systems, Montreal.

Corbett, A. T., Anderson, J. R., & Fincham, J. M. (1991). Menu
selection vs. typing: Effects on learning in an intelligent
programming tutor. Proceedings of the International
Conference of the Learning Sciences (pp. 107-112). Evanston,
IL.

Harvey, L., & Anderson, J. R. (in press). Transfer of declarative
knowledge in complex information processing domains.

Wu, Q. (1992). Knowledge transfer among programming languages.
(Doctoral dissertation, Pittsburgh, PA: Carnegie Mellon
University).

Wu, Q., & Anderson, J. R. (1991). Knowledge transfer among
programming languages. Proceedings of the 13th Annual
Conference of the Cognitive Science Society (pp. 376-381).

Wu, Q., & Anderson, J. R. (1993). Strategy choice and change in
programming. International Journal of Man and Machine
Studies, 39, 579-598.

11

